The Use of Cloud-Resolving Simulations of Mesoscale Convective Systems to Build a Mesoscale Parameterization Scheme
نویسندگان
چکیده
A method is described for parameterizing thermodynamic forcing by the mesoscale updrafts and downdrafts of mesoscale convective systems (MCSs) in models with resolution too coarse to resolve these drafts. The parameterization contains improvements over previous schemes, including a more sophisticated convective driver and inclusion of the vertical distribution of various physical processes obtained through conditional sampling of two cloud-resolving MCS simulations. The mesoscale parameterization is tied to a version of the Arakawa– Schubert convective parameterization scheme that is modified to employ a prognostic closure. The parameterized Arakawa–Schubert cumulus convection provides condensed water, ice, and water vapor, which drives the parameterization for the large-scale effects of mesoscale circulations associated with the convection. In the mesoscale parameterization, determining thermodynamic forcing of the large scale depends on knowing the vertically integrated values and the vertical distributions of phase transformation rates and mesoscale eddy fluxes of entropy and water vapor in mesoscale updrafts and downdrafts. The relative magnitudes of these quantities are constrained by assumptions made about the relationships between various quantities in an MCS’s water budget deduced from the cloud-resolving MCS simulations. The MCS simulations include one of a tropical MCS observed during the 1987 Australian monsoon season (EMEX9) and one of a midlatitude MCS observed during a 1985 field experiment in the Central Plains of the United States (PRE-STORM 23–24 June).
منابع مشابه
Analysis of updraft velocity in mesoscale convective systems using satellite and WRF model simulations
Updraft vertical velocity is an important dynamical quantity which is strongly related to storm intensity and heavy precipitation. It can be calculated by direct observations, NWP model, and geostationary satellites which can provide the possibility of measuring this quantity with high temporal resolution. This research analyzed updraft velocity based on six derived parameters from INSAT3-D and...
متن کاملTwo- and Three-Dimensional Cloud-Resolving Model Simulations of the Mesoscale Enhancement of Surface Heat Fluxes by Precipitating Deep Convection
Two-dimensional (2D) and three-dimensional (3D) cloud-resolving model (CRM) simulations are conducted to quantify the enhancement of surface sensible and latent heat fluxes by tropical precipitating cloud systems for 20 days (10–30 December 1992) during the Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE). The mesoscale enhancement appears to be analogo...
متن کاملParameterization of Convective Clouds, Mesoscale Convective Systems, and Convective-Generated Clouds
This presentation is a summary of research progress supported under the Atmospheric Radiation Measurement (ARM) project entitled "Parameterization of Convective Clouds, Mesoscale Convective Systems, and Con'o'ective-Generated Clouds." The approach used in this research is to perform explicit simulations of convective clouds and mesoscale convective systems for well-documented observed cases. Th...
متن کاملA Comprehensive Meteorological Modeling System- RAMS
This paper presents a range of applications of the Regional Atmospheric Modeling System (RAMS), a comprehensive mesoscale meteorological modeling system. Applications discussed in this paper include large eddy simulations (LES) and simulations of thunderstorms, cumulus fields, mesoscale convective systems, mid-latitude cirrus clouds, winter storms, mechanicallyand thermally-forced mesoscale sys...
متن کاملAnalysis of the Mesoscale Convective Systems Characteristics in West of Iran Case Study: April 23, 2004
In Iran the issue of occurring natural disasters, particularly mesoscale convective systems. They are important on one hand, because of their increasing intimidations and causing damages and on the other hand, because of their increasing abundance, time of duration, and happening. Therefore life cycle, constituton condition and mesoscale convective systems features in west of Iran using satelli...
متن کامل